

NaI

Sodium Iodide

CAS#7681-82-5

EINECS # 231-679-3

Technical Data Sheet

GHS Product Identifier: 113.04, Sodium Iodide Tech; 113.05, Sodium Iodide 57% Soln.; 113.14, Sodium Iodide USP; 113.15, Sodium Iodide High Purity; 113.25, Sodium Iodide Pure; 113.34, Sodium Iodide ACS.

Formula Description: Technical: White to light yellow crystalline powder. **USP/High Purity/Pure:** Colorless, odorless crystals or white crystalline powder. Deliquescent in moist air and develops a brown tint upon decomposition. Very soluble in water, freely soluble in alcohol and acetone. **ACS:** White powder; odorless; slowly becomes brown in air; deliquescent; saline, somewhat bitter taste. Soluble in water alcohol and acetone. **57% Solution:** Clear, colorless to light brown liquid.

Recommended Use: Sodium Iodide is an inorganic halogenated salt that is highly soluble. It finds medical applications as a thyroid symporter ¹ in cancer treatment. Sodium Iodide is also used as a scintillation detector and high efficiency for detection gamma rays ². NaI is a common reagent for organic synthesis reactions ³ and in the weather modification industry ⁴.

General Properties: Technical/USP/ACS/High Purity/Pure

Molecular Weight	149.9	Melting Point	661°C
Solubility	178 g/100 ml H2O (20°C)	Solubility	302 g/100 ml H2O (100°C)

General Properties: 57% Solution

57% Solution	Density	14.2 lbs/gal

Chemical Product Specifications

	Tech
Assay	98.0% min

	57% Solution	
Assay	55.0% - 59.0%	

Deepwater's **PurL**2ty products offer you full traceability for all raw materials.

All products are manufactured under current Good Manufacturing Practices (cGMP)

in our US FDA registered plant. FEI #2013633.

	PurI2ty USP	PurI2ty ACS (as is)	PurI2ty Pure	PurI2ty High Purity
Assay	99.0 – 101.5% (Anhydrous)	99.5% min (as is)	99.0-101.5% (Anhydrous)	99.5 – 100.5% (Anhydrous)
Identification	Passes Test		Passes Test	Passes Test
Alkalinity	USP Standards		USP Standards	USP Standards
Water	2.0% max		2.0% max	1.0% max
pH (5% Solution)		6.0 – 9.0 (25°C)	Report Results	Report Results
Insoluble Matter		0.01% max	Report Results	Report Results
Chloride & Bromide (as Cl)		0.01% max	0.01% max	0.01% max
Iodate (IO3)	4 ppm max	3 ppm max	4 ppm max	4 ppm max
Phosphate (PO4)		0.001% max	0.001% max	0.001% max
Sulfate (SO4)		0.005% max	0.005% max	0.005% max

Deepwater Chemicals, Inc., 196122 E County Road 40, Woodward, OK 73801 800-854-4064 * Fax 580-256-0575 * Website: <u>www.deepwaterchemicals.com</u>

Revised 07/26/2019

Nitrate, Nitrite & Ammonia	USP Standards		USP Standards	USP Standards
Thiosulfate & Barium	USP Standards		USP Standards	USP Standards
Potassium (K)	USP Standards	0.01% max	USP Standards	15 ppm max
Barium (Ba)		0.002% max	0.002% max	0.002% max
Heavy Metals (as Pb)		5 ppm max	0.001% max	0.001% max
Iron (Fe)		5 ppm max	3 ppm max	
Calcium (Ca)		0.002% max		
Magnesium (Mg)		0.001% max		
Trace Metal Analysis				≤ 100.00 ppm
Elemental Impurities Class 1	Cd, Pb, AS, Hg			
Elemental Impurities Class 2A	Co, V, Ni			

*Compendial grades conform to current USP and ACS editions

	Purl2ty 57% High Purity	
Appearance, Clear Colorless	Passes Test	
Identification	To Pass Test	
Assay	56.5% - 57.5 %	
pH	5.0% - 8.0%	
Hydrazine	\leq 5 ppm	
All impurity specs and results below	v are based on anhydrous NaI	
Iodate (IO3)	\leq 4 ppm	
Thiosulfate & Barium	USP Standards	
Potassium (K)	\leq 15 ppm	
Heavy Metals (as Pb)	$\leq 0.001\%$	
Nitrate, Nitrite, & Ammonia	USP Standards	
Chloride and Bromide	$\leq 0.01\%$	
Insoluble Matter	Report Results	
Phosphate (PO4) $\leq 0.001\%$		
Sulfate (SO4)	$\leq 0.005\%$	
Barium (Ba)	$\leq 0.002\%$	
Trace Metal Analysis	≤ 100.00 ppm	

Standard Packaging

Net Weight	Packaging	Product	
25 lbs.	LDPE 2 gal Pail	Tech/USP/ACS/Pure/High Purity	
400 lbs.	UN1H1 30 gal Polydrum	Sodium Iodide 57% Soln	
750 lbs.	UN1H1 55 gal Polydrum	Sodium Iodide 57% Soln	
Dry material packaged with polyethylene liner. All drums suitable for export.			

SDS with detailed information available upon request.

References:

- 1. Radioisotope Concentrator Gene Therapy Using the Sodium/Iodide Symporter Gene Robert B. Mandell, Leisa Z. Mandell and Charles J. Link Jr. Cancer Res February 1 1999 (59) (3) 661-668
- 2. W. F. Miller, John Reynolds, and William J. Snow, "Efficiencies and Photofractions for Gamma Radiation on Sodium Iodide (Thallium Activated) Crystals," Argonne Natl. Lab. Rept. ANL-5902 (1958)
- Syntheses of organic iodides via reaction of organoboranes with sodium iodide George W. Kabalka and E. Eugene Gooch, The Journal of Organic Chemistry 1981 46 (12), 2582-2584
- 4. Ice Nucleation Silver Iodide-Sodium Iodide: A Reevaluation, R. Blumenstein, W. Finnegan, L. Grant, the Journal of Weather Modification, Vol 15, No 1 (1983)

